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The standard Monte Carlo approach to evaluating multidimen-
sional integrals using {pseudol-random integration nodes is fre-
toenlly nsed whoen quadrature methods are too dilficull or oxpen-
sive to implement. As an alternative to the random methods, it has
been suggested that lower error and improved convergence may
be obtained by replacing the pseudo-random sequences with more
uniformly distributed sequences known as quasi-random. In this
paper guasi-random {Halton, Sobol’, and Faure} and pseudo-ran-
dom sequences are compared in computational experiments de-
signed to determine the effects on convergence of certain properties
of the integrand, including variance, variation, smoothness, and
dimension. The results show that variation, which plays an im-
portant role in the theoretical upper bound given by the Koksma-
Htawka inequality, does not affect convergence, while variance, the
determining factor in random Monte Carlo, is shown to provide a
rough upper bound, but does not accurately predict performance. In
general, quasi-Monte Carlo methods are superior to random Monte
Carlo, but the advantage may be slight, particularly in high dimen-
sions or forintegrands that are not smooth. For discontinuous integ-
rands, we derive a bound which shows that the exponent for alge-
braic decay of the integration error from quasi-Monte Carlo is only
slightly larger than ¥in high dimensions. ® 1995 Academic Press, Inc.

1. INTRODUCTION

1.1. Applications of Quasi-Random Sequences

Quasi-random sequences have been greatly touted (or their
theoretioal properties, for example inreeent articles in Scientifie
“Awmerican, Science, and SIAM News. They have seen little reat
application, however, because the theoretical advantages are
often difficult to atain, In fact, previous computational studies
[1, 6,8, 17. 19] showed that quasi-random methods can provide
significant improvement, which, however, falls well short of
their theoretical potential.

Our paper is an attempt to fill in that gap by careful numerical
experiment to clarify the real advantages and weaknesses of
quasi-Monte Carlo in computations. The computations pre-
sented here clearly show the influence of variation, variance,
dimension, and smoothness on the convergence rates of quasi-
Monte Carlo integration. We expect that the conclusions of this

* Rescarch supported in part by the Air Force Office of Scientific Research
under Grant AFOSR 90-0003.

study will be useful for the application of quasi-Monte Carlo
methods to particular problems, as well as for the development
of variance reduction and other Monte Carlo techniques using
quasi-rancdom sequences.

In Scetions 2 and 3 the integrals of several test functions arc
approximated by using the Halton, Sobol’, and Faure sequences.
For each example the integration error is approximated by the
form ¢N72, in which N is the number of quasi-random integra-
tion points. In general, the results show that quasi-Monte Carlo
integration is superior to standard Monte Carlo in exponent &
{which is } for standard Monte Carlo) or in the constant ¢,
but that the improvement degrades as the smoothness of the
integrand decreases or the dimension increases. These conclu-
sions and their implications for further use of quasi-random
sequences wilt be discussed in Section 4,

1.2. Low Discrepancy Sequences

Monte Carlo methods use independent, unifor'mly distributed
random numbers on the s-dimensional unit cube * as the source
of integration nodes. In the simplest case, if {z} is such a
sequence of random points in I, then the integral of the function

Jlx,, ... x)yover I' is approximated by the average of fevaluated

at the points z;. The error,

l N
£ = _[,i J(x) dx — ﬁ:{ Lt AR

satisfies the relationship involving the expectation E(-) of a
random variable

Eey = T30,

where o’(f) is the variance of f defined by

2
o) = L Fax) dx — (L fix) dx) .

This shows the familiar convergence rate of N2 associated
with random methods. The key property of the random sequence
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is its uniformity, so that any contiguous subsequence is well
spread throughout the cube, This idea has lead to the suggestion
that using other sequences which are more uniformly distributed
than a random sequence may produce better results. Such se-
quences are called quasi-random or low discrepancy sequences.

Initially it may appear that a grid would provide optimal
uniformity. However, grids suffer from several difficulties.
First, in high dimension, the number of points required to create
even a course mesh is exponentially large in dimension. Also,
grids have rather high discrepancy, a quantity which measures
the uniformity of a set of points. This is defined and discussed
below. Finally, the only obvious method for increasing accuracy
of a uniform grid is to halve the mesh size, which requires

adding 2° times the current number of points, so that the accu-

racy of a uniform grid cannot be increased incrementally.

A solution to this problem is to use infinite sequences of
points such that for every , the first ¥ terms of the sequence
are uniformly distributed throughout the cube. In order to quan-
tify this, the discrepancy of a set of N points is defined as
follows: Let () be a rectangle contained in I* with sides parallel
to the coordinate axes, and let #1(() be its volume, The discrep-
ancy Dy of the sequence {x;} of N points is

# of points in
__..E_[V—_Q — m(Q) s

Dy = sup
ger’

By the law of iterated logarithms, the expectation of the discrep-
ancy of a random sequence is bounded by (log log N)N™"~
There are many quasi-random sequences known for which the
discrepancy is bounded by a constant times (log N)/N, which
suggests greater uniformity than a random sequence. Three
such sequences, the Halton, Sobol’, and Faure sequences, were
chosen for comparison in this work and are briefly described
now. A more thorough discussion of these sequences can be
found in {9, 15, 16].

The Halton sequence [4] in one dimension is generated by
choosing a prime p and expanding the sequence of integers 0,
1, 2, ..., N inte base p notation. The ath term of the sequence
is given by

where the a's are integers taken from the base p expansion of
|

[n — 1], = an@pey ... 21,

with 0 = a; << p. For example, if p = 3, the first 12 terms of
the sequence (n = 1, ..., 12) are

{0,Lehenzee Lo )
s 32 33 9, 5, 9y 0y &y 9y 2T, 27y 275 ---f-

219

Note that the numbers lie in cycles of p increasing terms and
that, within the cycle, the terms are separated by 1/p. The effect
is that once a grid of refinement 1/p™ is filled in by repeated
sweeps of these cycles, the next cycle starts filling in the grid
atlevel 1/p™*'. The s-dimensional Halton sequence is generated
by pairing s one-dimensional sequences based on s different
primes; usually the first s primes are chosen. One difficulty
with this sequence is that in high dimensions, the base p must
be large, so that the cycle of increasing terms is rather long.
When paired against another large prime-based sequence, the
result is that the points lie on parallel lines which slowly sweep
through the unit square. Thus the distribution of points is not
very uniform.

In the definition of Dy, the restriction to rectangles with sides
parallel to the coordinate axes is due to this construction of an
s-dimensional sequences as a product of one-dimensional se-
quences.

As an alternative, the theory of (1, s)-nets has been developed
by Sobol” [20], Faure [3], and Niederreiter [15]. The Sobol’
sequence solves the problem of large primes by only using p =
2. The sequence is generated such that the first 27 terms of
each dimension for m = 0, 1, 2, ... are a permutation of the
corresponding terms of the Halton sequence with prime base
2 (also known as the van der Corput sequence). If the proper
choice of permutations is used, the resulting s-dimensional
sequence can be shown to have good uniformity properties.
However, as dimension increases, more permutations must be
used, and the possibility increases that a bad pairing may exist
between two dimensions leading to a highly nonuniform distri-
bution in that plane.

The Faure sequence is similar to the Sobol’ sequence in that
each dimension is a permutation of a Halton sequence; however,
the prime used for the base is chosen as the smallest prime
greater than or equal to the dimension. If this prime is labeled
p(s), then each dimension of the Faure sequence is generated
such that the first p(s)™ terms form = 0, 1, 2, ... are a permutation
of the corresponding terms of the Halton sequence base p(s).
The advantage of this is that as long as 5 = p(s), an optimal
set of permutations can be prescribed. However, as dimension
increases, the problems of large primes arise, though not as
quickly as with the Halton sequence.

In his review papers [13] and [14], Niederreiter summarizes
the properties and theory of these sequences. The key point is
that their discrepancy satisfies the relationship

(log N)* (log N)=!
Dy=c, v +@( ~ s

where ¢, different for each sequence, is constant in N, but
depends on s. This is an optimal upper bound in the sense that
for any infinite sequence, there exist an infinite number of N
such that
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log N)*

for some constant ¢. These bounds suggest that, at least for
large N, the quasi-random sequences described above will be
considerably more uniform than a random sequence. The rela-
tionship between discrepancy and integration error is de-
scribed next.

1.3. Error Bounds

As stated above the expectation of error for random Monte
Carlo integration is o(f)N~'". Because probability theory can
no longer be used, a different approach is necessary to bound
the integration error when quasi-random sequences are used.
It turns out that it is the variation of the integrand which appears,
and not the variance. i f(x,, ..., x,) is sufficiently differentiable,
then for all positive & = 5 and all sets of k integers 1 = i, <
iy < o <y = 5, define the quantity

df; "’df,‘,
1 &

= Lty

Wmmmm=bk4ﬁ* M

3t - ot

e

which represents the variation of the projection of k variabies.
The variation in the sense of Hardy and Krause is then defined as

> VE(fi e, ).

§
E=1 1S i Sipss

vif)y= (2

The restriction of differentiability is stronger than necessary
and may be relaxed to the standard notion of bounded variation.
The main result on integration error is known as the Koksma—
Hlawka inequality, which states that if fis a function of bounded
variation in the sense of Hardy and Krause, and {x;} is a sequence
of N points in I* with discrepancy Dy, then

(3)

J, fodx =3 x| = Vh) Dy.

As with the expectation of error in the random case, the
effects of the integrand are separated from those of the se-
quence. The bound on the discrepancy of a random sequence
indicates N2 type convergence and suggests that a sequence
with smaller discrepancy than a random sequence will give
smaller errors. The requirement that the integrand be of bounded
variation is considerably more restrictive than the condition
for the random case of finite variance, and it excludes many
integrands of interest. For example the characteristic function
of any nonrectangular set has infinite variation. The relationship
of such functions to particle simulation is described in Section
3 as motivation for the convergence results presented there,

Anather approach to describing integration error comes from
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considering the average case error for the class of continuous
functions equipped with a Wiener sheet measure. In [21]
WoZzniakowski gives a result which relates this average integra-
tion error for such functions to an L, version of discrepancy.
Further discussion and an alternative derivation of this can be
found in [9]. This result suggests that low discrepancy se-
quences should out perform random sequences, at least for
large enough N, even for functions that are only Hélder continu-
ous with exponent

2. VARIATION, VARIANCE, SEQUENCES,
AND DIMENSION

From the Koksma-Hlawka inequality (3), one might hope
that variation would play the same role for quasi-random inte-
gration as variance does for standard Monte Carlo. However,
certain observations suggest that variation ts a suspect quantity
for measuring integration error. For example, from the defini-
tion it can be seen that total variation involves a sum of varia-
tions over only those lower dimensional boundaries where all
the restricted variables are equal to 1 (not 0). This can lead to
considerable differences between the variation of two basically
identical functions. It might be expected that the functions f
and g,

fG, vnx) =110 —x)
i=1

glxy, . x) = [[ %,
=1

would be integrated virtually identically by a quasi-random
sequence. However, V{f) = 1 and V(g) = 2* — 1. While this
may be an extreme case, it does introduce some doubt as to
the usefulness of variation in predicting integration errors.

2.1. Setup of Numerical Experiments

In order to investigate the actual role that variation plays in
determining the integration error, a variety of test functions
with a wide range of variations were integrated over the unit
cube. Effects of variance, dimension, and choice of sequence
were also observed. The functions were chosen so that they
could be integrated analytically and so that the variance and
variation could be at least estimated, if not explicitly calculated.
The test functions used were all normalized so that they inte-
grated to 1.

For each experiment, the results of error versus N are plotted
on a log log scale (base 2), and an empirical convergence rate
¢N~* is determined, in which ¥ is the number of quasi-random
points used and ¢ is somewhere between 0 and 1 {0 = 0.5) is
the expected behavior of a2 random sequence). The values of
o and ¢ are found by a least-squares linear fit of ¢cN ® to the
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data on a log log scale in a certain range of N. Although this
formula cannot be expected to be an asymptotic formula for
the integration error, there is too much scatter in the numerical
results to determine a more precise convergence rate, Moreover,
for the range of computationally practical N, this is an adequate
indicator of performance.

Within a given range of N, we choose m values of N, denoted
Ni. 1 =i = m, that are equally spaced on the logarithmic scale.
For example for the range N = 1,000 to ¥ = 100,000 and m =
100, we have that Ny, = 1,000, N, = 1,047, ..., Ny = 95, 499,
Ny = 100,000, While this tends to make the low end of the
range of A have a few more points, it is much better than evenly
spacing the N;. On the log scale that causes almost all of the
points to be clustered together at the high end.

The experiments were run by generating the first N, terms
of the sequence in question. Because the Halton sequence starts
with a point very close to zero in high dimensions (the first
points is 1/2, 1/3, ..., 1/g(s)), where g(s) is the sth prime) and
some of the integrands used are highly sensitive to this point,
the first 200 terms of the sequence are discarded. This number
is arbitrary, and discarding the first 10 terms would probably
suffice. The Faure sequence has a similar problem, so follow-
ing Bratley and Fox [1], it is also started in the middle at the
(p(s)* — Dth term, where p(s) is the first prime greater than or
equal to s.

Once these N, terms have been generated, the integral is
ap}yroximated with thermn and the square error { f of dx — (1/N)
200, f(x))? is Tecorded. Then the next N, terms of the sequence
are generated, and the process is repeated. This leads 1o values
of the square error at N = N, ... , N,, and requires % N; points
in the quasi-random sequence.,

Unfortunately, just as in the random case, there is a great
deal of scatter in the value of the error. A consistent and reliable
value of the error is obtained by performing the numerical
computation a number of times (or runs) and using the root
mean square etror for each value of N. The second run begins
by calculating the next N, terms of the sequence, which are
different from any of the terms used in the first run.

It is important to note that the error calculated for each value
of N is “‘independent’” of the error caiculated for other values
of N, since points in the quasi-random sequence are not reused.
The advantage of doing this is that the errors associated with
N and ¥, will not be correlated, as they would be if the other
method were used. This helps make convergence more easily
indentifiable. On the other hand, the method of adding N, —
N, points to the original N, to get the error using N, points is
exactly the approach used to actually evaluate an integral, when
the answer is unknown and determination of convergence rate
is not the goal.

2.2, Simple Multidimensional Integrals

The first set of trial functions consisted of relatively simple
multidimensional functions formed from products of one-di-
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TABLE 1

Test Functions for Determining Effect of Variation

Function Variance Variation
15 4 - 2| (i)s -1 6 — 2
3
(1+%)5Hf,lx}“ (1+s2l2s)1—1 (1+-i—)i(25*])
mﬂl.(s—x.) (l+m)s—| %ES—OQ)Q

mensional functions, such as those used in [1] and [8]. The
advantage of this was that the values of the integral, the vari-
ance, and the variation could be easily obtained. These functions
could also be chosen to have specific properties such as high
variation and low variance. Thus they were important for de-
termining the effect of the various factors in question, even
if the integrals themselves are of little practical interest. The
functions, their variances, and their variations are given in
Table 1. For the first function both variance and variation grow
exponentially with dimension. For the second function the vari-
ance decays to zero while the variation grows exponentially,
The variance decays in the third example, while the variation
remains nearly constant.

Figures 1 and 2 show plots of log(error) versus log N for
the range Ny = 1,000 to N,; = 30,000 for the last two functions
from Table I. The error here is the root mean square (rms)
error described above, obtained from averaging over 50 runs.
Results are given for dimensions s = 5, 10, 20, 30 for the
Sobol” sequence. For reference, the expected value of the rms
error for a random sequence is also plotted for each dimension.
The calculated errors are represented by points which are con-
nected by lines to help clarify the trend. Because these are

Sobol Sequence, 50 Runs, 5 to 30 Dimensions

r
% T — —

1032 of emror

14 L L N L Ty

10 11 12 13 14 15
tog2 of N

FIG. 1. [Integration error for F = H,Ll {1 + T/s)xl®
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50 Runs, Di 51030

——r T T

log?2 of emor

-18 —

e

1105 11 115 12 125 13 135 14 145 15
log2 of N

FIG. 2. Integration error for F = Hzgl (s — x¥(s — 0.5).

log log plots, the linear behavior corresponds te an error of
size cN 2

These plots illustrate certain points which hold true in general
for quasi-Monte Carlo integration. Of particular importance
here is that for the first function, the variation grows eXxponen-
tially with dimension, while in the second plot, the variation
is virtually constant with dimension. Such trends in the error
cannot be detected. However, both functions have similar vari-
ances, and also similar behavior with regard to error. From
these experiments, as well as those described below, it can be
seen that the use of quasi-random sequences generally results
in lower error than with random sequences. As the random
error is determined by the variance of the integrand, the variance
may then be interpreted as patt of an approximate upper bound
on the Integration error,

The results of this study verify what was suggested above,
that variation is not an important quantity in determining inte-
gration error. These examples were of limited generality, how-
ever, since the integrands were all product functions. In the
next three subsections, more realistic examples are presented,
which contain many of the features of true scientific or engi-
neering problems, but in a simplified or restricted setting where
the exact solution is known. The roles of dimension and choice
of sequence will be considered more carefully in the next
section.

2.3, Absorption

Monte Carlo methods are frequently used to solve integral
equations associated with transport problems. The behavior of
quasi-random sequences in this setting was studied by Sarkar
and Prasad in [19], where a fairly simple one-dimensional ab-
sorption problem was investigated. We consider an even sim-
pler problem; the integral equation

v = [lmyryde +x,

MOROKOFF AND CAFLISCH

which describes particles traveling through a one-dimensional
slab of length one. In each step the particle travels a distance
which is uniformly distributed on [0, 1]. This may cause it to
exit the slab; otherwise, it may be absorbed with probability |
— v before the next step. In the equation, x describes the current
position of the particle, and y(x) gives the probability that the
particle will eventually leave the slab given that it has already
made it to x, The quantity of interest to calculate is then y(0), the
probability that a particle entering the slab will leave the slab.
The solution of this test problem is

xﬂ=$u—u—ynmwa—ﬂn

The solution may also be represented by an infinite-dimen-~
sional integral over the unit cube

y0) = [ Frx Ry dR,
n=0

where

ntl

F"zy"@(l —x—iRj) X B(ER;*(I _x))'
=1

=

Here #(z) is the Heaviside function

{1, z=0
o= 0, z<0’

This corresponds to a Monte Carlo particle simulation where
the particle does a simple forward random walk with jump size
uniformly distributed on [0, 1]. If it leaves on its (n + 1)th
jump, it contributes y" to the sum which approximates y(x).
Because the high dimensions represent the contributions of
particles which undergo many collisions before leaving the
slab, and the likelihood that a particle can go more than a few
collisions before either leaving or being absorbed is quite small,
¥(x) can be quite accurately represented by truncating the inte-
gral at a finite n. For the purposes of computational experiments,
the cutoff n = 20} was chosen, although the same resuits would
have been obtained with n = 6.

When x = () and the integrand is normalized so that the above
integral is 1, the variance of the function can be calculated as

at anrrnaiz :—i’y__il

Fromsie) = T =30
The variation of F is infinite, because it is composed of charac-
teristic functions of nonrectangular sets (cf. Section 3). Figure
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100 Runs, Dimension 20

—— T

log2 of error

Mo 105 11 115 12 125 13 135 . id 145 15
tog2 of N

FIG. 3. Error for analog absorption particle simulation.

3 shows the results of running this simufation for a survival
probability of v = (.5. The data were taken at 50 points evenly
distributed on a log scale between N = 1,000 and ¥ = 30,000,
The data were averaged over 100 runs. The results are discussed
below, where they are compared with results from a modified
version of this simulation which has finite variation. This second
simulation is described next.

Following the work of Sarkar and Prasad, the ‘“‘analog™
simulation described above can be adapted to produce a smooth
integrand. The idea is that each jump that the particle makes
should contribute something to the evaluation of the integral, so
that there is not an all-or-nothing (discontinuous) contribution if
the particle leaves the slab or i3 absorbed. In fact in the new
simulation, the particle never leaves the slab at all and is never
absorbed. In this framework, the solution y(x) can be written as

y{x) =x+ J:" z Fx, E) dR,
n=0

where

Fr=v"(1—xy (nz_l R?"') (1 -1 —x)ﬁRj).

i=1

For reasons given above, it is only necessary to go out to a
finite » (number of jumps that the particle makes), here chosen
to be 20. The corresponding simulation foliows a particle
through 20 jumps. If after n jumps the particle is at position
x', the length of the next jump is sampled uniformly from the
interval (@, 1 — x'] and the quantity y"(1 — x)" is added to
the sum which approximates y(x).

The most important difference between the second simulation
approach and the first is that the integrand of the second is now
smooth and has much lower variance. The variance of F starting
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from initial particle position x = 0 can be given explicitly by
a rather lengthy formula. Once the integrand has been normal-
ized, the value of this varance is 0.0742, whereas the variance
for the first method (nonsmooth) is 1.8467, assuming a survival
probability of y = (.5 is used. As stated above, the variation
of the first method is infinite; because the integrand for the
second method is smooth, it has finite variation.

Figure 4 shows the computational results of using quasi-
random sequences to perform the second simulation and is to
be compared with Fig. 3 for the non-smooth simulation. Again
a vy of 0.5 was used. Since the effective dimension of this
problem was only 6, it is not surprising that the smooth case
results look guite similar to the results of the other low-dimen-
sional test problems, with the Halton sequence giving the best
performance. The Faure sequence has somewhat higher error
than the others, but this can be attributed to the fact that the
prime used to generate the sequence was 23, the first prime
larger than the dimension 206. The rate of convergence for all
the sequences is around N~ for the smooth case.

On the other hand, for the analog particle simulation of Fig.
3, Halton has the lowest error and a convergence rate of N7,
Faure has larger error, but a slightly better convergence rate
of N™*¥, The slow convergence of the Sobol's sequence is
unusual and puzzling; it illustrates the difficulty of predicting
convergence for quasi-random sequences. In the next section
more examples of characteristic functions are studied.

2.4. Bolizmann Collision Integral

The second example comes from the Boltzmann equation,
which describes the evolution of a distribution function f(£)
for the density of a rarefied gas in velocity space. Suppose f(£)
can be written as

J&) = /(&) + L&),

where the f; are Maxwellians, i.e., they have the form

100 Runs, Dimension 20
L] T r — T v

e T T A

log2 of emror

18 N . " . . . " .
10 10.5 11 115 12 125 13 13.5 14 14.5 15

log2 of N

FIG. 4. Error for smooth absorption particle simolation.
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f(&) = p(B/m)y" exp{—B{€ — u)}

Here p, u, and 3 are the fluid dynamic density, velocity, and
inverse temperature. In [2] Deshpande and Narasimha give an
exact formula for this case for the gain in f(£) due to binary
collisions. This gain can be described by an integral over all
possible collisions which result in a particle with velocity £
If the hard sphere collision model is used with molecular
diameter ¢ = 2, and the Maxwellians are chosen so that p, =
m=106==L1L1u=(u0,0)andu = (0, 0), then
the exact value of the gain integral for f(0) is given by the series

4 o
=exp{—24% D, cus,
T =0

where

3Hl_1
T 135+ (2k+ 1)

Cy

The gain term to which this corresponds is an integral over the
velocity variable w = (w,, w,, wy) and two angle parameters
x and & which determine the type of collision. If w* = wi +
wi + wh, w = Vw?, and wy; = Vwi + ui, then the integral
can be written as

1 v .
= J'gtg ﬁ j Z W sin y 45 ¢*v dy de dw,

where

h(u, w, x, £)
= =212 + n(w) + wy + (W — wi)cos y)

. . Ww;COS € + ww, Sin g
4usiny |wyasme + - .
Wi

This is the first example given here which is not explicitly
an integral over the unit cube. But the standard Monte Carlo
methods for sampling variables which are not uniformly distrib-
uted on the interval [0, 1] may also be used here to create
quasi-random sequences with the required distribution. In this
case these sampling methods are equivalent to the change of
variables

c=ef (-1, i=1,2,3
X=TXx
&= 21Tx5.

Here erf™! is the inverse of the error function
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100 Runs, Dimension 5

S————

Tog2 of emor

.11 N . " N . . .
0 10.5 11 115 12 12.5 13 13.5 14 14,5 15

log2 of N

FIG. 5. Boltzmann collision integral for two maxwellians.

erf(w) = - d.

2 J' w
Valo
Under this change of variables the integral becomes

V7 J  wsin y et gx.
r

It should be noted here that many sampling techniques, when
viewed as a change of variables, produce nonsmooth integrands
or may map the characteristic function of rectangular set to an
irregular set. As discussed in the next section, this may cause
a decay in the performance of the quasi-random sequences
which is not observed in the random case. Thus care must be
taken when using low discrepancy sequences with the standard
methods of Monte Carlo, including sampling and variance re-
duction.

The results of the convergence experiment for this five-
dimensional integral are given in Fig. 5. Here u was taken to
be 0.25, and the results shown are relative error (the integral
is normalized to one). All three quasi-random sequences show
similar behavior which is significantly better than the psendo-
random behavior. The least-squares fit convergence rates range
from N~ to N4 for these sequences, while pseudo-random
shows a convergence rate of N°3'.

2.5. Feynman—Kac Path Integrals

A third situation where Monte Carlo methods are frequently
used is the evaluation of Feynman—Kac path integrals. Al-
though diffusion Monte Carlo, Green’s functien Monte Carlo,
or the Metropolis algorithm are more commonly used to evalu-
ate such path integrals, this direct evaluation provides a chal-
lenging, but easily stated test problem for quasi-random inte-
gration.
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If V(x) is a potential function, then the quantity u(x, r) given by

u(x,n) = E, [exp {—L V(b(7) d"r}:l @)

may be considered. Here £, is the expectation over all Brownian
motion paths b(7) that start at x. In [5] Kac shows that
ulx, 1) satisfies

= — Vou. (3)
We obtain a high-dimensional test problem from Eq. (4)
by discretizing in time and considering a random walk with

Gaussian steps of variance At as an approximation to Brownian
motion. Equation (4) is then expressed as

w'(x) = Lﬁﬂ (1 — At V(x+ \/&ig,)) W(x) dG, + - - dG,.

Here

1 2
dG; = 73""20,’ i
2m ¢ &

Now u'(x) satisfies the time-discretized version of Eq. (5)
D = (1 — ArVe))u'(x) + A (x).

If V(x) is taken to be ¢ and the initial data is 27 periodic,
then the Fourier transform of the discrete equation shows that

By = (1~ Airk) — Atirk — 1), (6)

If the initial data are chosen to be constant, #'(x) = 1/27, then
all the nonzero modes are initially zero, while #%(0) = 1. It
follows from Eq. (6) that all negative modes of w* remain zero,
while the positive modes change and the zeroth mode remaing
constant. This means that

J ) dx = ﬁ W(x) dx

for all n. By setting s = nand At = 1/s, the (s + 1)-dimensional
integral representing the total mass of w, the solution of Eq.
(5), at time T = 1, is

I * 1 ] 1<
L tew (i 236)])
W(x)dG, - - dG, dx.

This is just the integral of u*(x) which is equal to the integral
of the initial data and thus equal to one.
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47 Runs, Dimension 40

log2 of emror

log2 of N

FIG. 6. Feynman-Kac path integral.

Again this is not an integral over the unit cube, but the same
methods used for the Boltzmann collision integral may be used
here. The inverse error function is used to generate (Gaussian
distributed points, and x is sampled uniformly on [0, 27] by
multiplying uniform numbers on [0, 1] by 27. The results of
the experiment using pseudo- and guasi-random sequences to
evaluate this integral in 40 dimensions (s = 39 time steps plus
one spatial integration} are shown in Fig. 6. Even though the
dimension is rather high, the Halton sequence still gives the
lowest errors, although the Sobol” sequence is very close. On
the other hand, the Faure sequence is noticeably worse. For
small N it leads to errors roughly the size of those given by
the pseudo-random sequence. All three quasi-random sequences
show convergence between N9 and N %! while the least-
squares fit for pseudo-random indicates convergence as N~
Although in this computation each dimension is of equal sig-
nificance, it may be possible to formulate an improved method
in which the higher dimensions are of decreasing significance.

3. CHARACTERISTIC FUNCTIONS, CONTINUITY,
AND DIMENSION

The performance of quasi-random sequences in evaluating
integrals of characteristic functions is of considerable interest
because this indicates their potential for success in Monte Carlo
particle simulations. As illustrated in the last section, a particle
simulation may frequently be described by a multidimensional
integral. Characteristic functions arise whenever a yes/no deci-
sion must be made, such as if the particle is absorbed. The
characteristic function to be integrated corresponds to the subset
of the parameter space where the parameter values indicate a
positive decision. When the domain of the parameter space is
mapped onto the unit cube, the volume of the “*yes’’ set (i.e.,
the value of the integral of its characteristic function) is just
the probability that the decision is accepted.
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TABLE II

Radii of Sets Used for Characteristic Function Integration

Shape s=2 s=73 s=4 s=35 s=6
Cube (7)3 772 (7)3f2 7\63 7
g ® ® @

0.670 0.766 0.818 0.852 0.875
Cone 17_2 17\ 1 (ﬂ_ )113 1 4)w 1
360 2 %) EAVE] 2 (5 2
0.027 0.162 0.297 0.408 0.5

In this section another side of the variation issue is also
raised. In general characteristic functions have infinite variation,
the exception being rectangles with sides parallel to the coordi-
nate axes. The question of whether the infinite variation causes
performance degradation is addressed by also considering inte-
gration of a continuous and a smooth function with support on
a sphere inside the unit cube.

3.1. Characteristic Functions of Cubes and Cones

In order to determine the effects of jumps in the integrand,
integration experiments were run using characteristic functions
of a cube and a cone. The cube was used because it is the basis
of the definition of discrepancy and has finite variation equal
to 2°. This is related to the fact that there is a jump of size one
in the direction of the coordinate axes at each corner. The cone
was chosen because it has infinite variation and is pointed. The
experiments were run to compare sequences and to determine
convergence rates as a function of dimension.

In order to compare results across dimensions, the integrands
were normalized so that the integral of each function for all
shapes and dimensions was one. In a given shape class, the
largest radius possible was used in dimension six. The radii
used for dimensions two through five were then computed such
that these functions would have the same variance. This has
the advantange that if random numbers were used for the calcu-
lation, the size of the error would be the same in all dimensions.

For the cube. the center was chosen to be (5 % ..., B, and
side length was the “‘racdius™ parameter. In six dimensions, the
side length was chosen to be & which gives a normalized
variance of 1.228. The cone was described by the set

1 2 5=1 1 2
{(xl, e X) 4R2(x5 - -2-) - ; (x, - 5) = 0}.

This actually describes two cones with a common tip at (3 %
..., 3y and circular bases of radius R lying in the x, = O and x; = 1
planes. In six dimensions R was set to §; and the corresponding
normalized variance was 360/7% — 1, which is about 35.48.
Table I shows the radii (or side lengths) used for each shape
and each dimension.
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Table II shows the results of using a pseudo-random se-
quence (R) and the three quasi-random sequences (H, S, F) to
integrate the characteristic functions of the sets described above.
The experiment consisted of 50 runs using 50 logarithmically
evenly spaced values of N in dimensions two through six. For
both the shapes, the size of the error increases with dimension.
Convergence behavior is generally best in two dimensions and
tends to decay as the dimension increases. For the most part,
the Halton sequence gives slightly lower errors, especially in
two dimensions. For the cube, convergence in two dimensions
is around N~%* for all sequences, while for dimensions three
to six, the least-squares fit convergence rates ranged from about
N9 to N~ The Faure sequence appears to start out with
slightly higher error, but it converges a little faster, so that all
the sequences end up with similar error size at N = 30,000.

For the cone, the error is considerably closer to the expected
random error in size and in convergence raic than for the cube.
For dimensions four to six, all the sequences and dimensions
look about the same, except for the four-dimensional Sobol’
sequence, which performs rather erratically. The convergence
rates range from N~ to N"%%, Again, the Halton sequence is
marginally better than the others, with the greatest difference
being in dimension two. Otherwise, Halton and Faure look very
much alike, while Sobol’ gives errors in about the same range,
but is less predictable,

A similar set of experiments were done for the characteristic
function of a sphere in dimensions two through six. These
showed error behavior similar to that of the cone, For the

TABLE III

Integration Error for Characteristic Functions of Cube and Cone

Convergence Error at
Shape Dimension Sequence rate N = 32768
Cube 2-6 R —0.50 0.00609
2 H -0.96 0.00019
5 -0.97 0.00031
F -0.92 0.00035
4 H -0.79 0.00065
5 —0.81 0.00061
F -0.8% 0.00086
6 H -0.76 (0.00092
5 —0.71 0.00094
F —0.82 0.00115
Cone 2-6 R —{.50 0.033
2 H -0.79 0.0045
S —0.79 0.0068
F —0.66 0.0081
4 H —0.62 0.012
5 —0.59 0.023
F ~0.61 0.013
6 H -0.59 0.015
5 —0.54 0.015
F -0.54 0.017
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sphere, the two-dimensional convergence rate for all sequences
was about ", while the higher dimensions had a rate around
N8 Again, Halton performed slightly better in two dimen-
sions; however, the Sobol” sequence did not look particularly
odd or unpredictable compared with the others.

The fact that quasi-random sequences performed better on
the cube was to be expected. The sequences are constructed to
minimize discrepancy, which is based on rectangles. Also, each
multidimensional sequence is made from a combination of one-
dimensional sequences. This corresponds to a cube being the
product of one-dimesional characteristic functions. However,
it should be noted that the 1/N type convergence suggested
by the discrepancy bound (ignoring the log factors) is only
approached in two dimensions, at least for the range of N
considered here. For nonrectanguiar characteristic functions, it
appears that a convergence rate only moderately better than
that of a random sequence can be expected from quasi-random
sequences. This is of particular importance for particle simula-
tions where a decision process may be equivalent to such a
function.

On the other hand, note that in all of these experiments the
error for quasi-Monte Carlo is significantly lower than the error
tor standard Monte Carlo at the largest value of V. This indicates
that quasi-Monte Carlo can decrease the constant ¢ in the inte-
gration error size ¢N®, even if it does not significantly improve
the decay rate v, While this is reminiscent of variance reduction
techniques, it is important o note that quasi-Monte Carlo con-
cerns manipulating the source *‘random’’ points, whereas vari-
ance reduction involves changing the integrand and integration
domain. Thus these are two different techniques which may be
used simultaneously.

3.2. Continuous and Smooth Functions on a Sphere

The question arises now as to whether the poor performance
of quasi-random sequences on characteristic functions relative
to the smooth functions examined earlier is connected to the
fact that these functions have infinite variation. To investigate
this, two more sets of experiments were conducted. Both in-
volved functions which have support on spheres contained
within the unit cube. The first was the continuous but not
differentiable function

R(s) —r, r=R(s)

F(x;,..,x)= { 0. > RGs)

Here
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TABLE IV
Radii for Functions with Spherical Supportt
Function s=2 s=3 s=4 =13 s=6
Continuous L i"‘_)'” (l e FEAS 1
V448 560 1008 3136 2
0.148 0.260 0.353 0432 0.5
Smooh [ HON® (7t HD)" (L@ R (63} R
128 H(6) 256 H(6) 128 H(6) 512 H(6} 2
0.146 0.256 0.350 0430 0.5

and R(s) is the radius given in Table IV, Because this function
is not differentiable on F, it has infinite variation. The second
example was the C™ function

exp{—(20z(1 = z2)7*, z=1

F(xl,...,xs)—{ 0 >

Here z = #/R(s). The variation of the function can be estimated
if it is assumed that in each quadrant the sth derivative will be
of one sign. Because the function is zero at the boundary of
the cube, the variation will be the sum of the function integrated
over the boundary of each quadrant of the sphere. Because
there are 2° guadrants, it follows that the variation will grow
exponentially with dimension.

A new set of radii had to be calculated for each function
becaunse the values of the integral and the variance are different
than for the characteristic function of the sphere. Again the
radii were chosen to maintain constant variance across dimen-
sion. For the continuous function, the normalized variance was
672/m* — 1, or about 20.7, For the C* function some additional
notation is necessary to precisely give the radii and variance. Let

fizy = exp[—(20z(1 — 2y %)

for 0 = z = 1. For dimension s = 2 to 6, define

[z @

(o)

Then the normalized variance of the smooth function is 64
H(6)/m> — 1, which is around 15.63. The appropriate radius
necessary to maintain variance for each dimension and each of
the functions is listed in Table IV.

His) =
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TABLE V

Integration Error for Functions with Support on Sphere

Convergence Error at
Function Dimension Sequence rate N = 32768
Continuous 2-6 R —-0.50 0.025

2 H —0.99 0.0006

5 —1.00 0.0014

F —0.97 0.0015

4 H —0.95 0.0020

S 070 0.0037

F -0.75 0.0033

6 H —0.65 0.0048

8 —0.73 0.0039

F -0.72 0.0047

Smooth 2-6 R —-0.50 0.022

2 H —0.20 0.0011

S —0.94 0.0023

F —0.94 0.0023

4 H —0.74 0.0039

S —0.62 0.0096

F —0.68 0.0049

6 H —0.62 0.0070

S —0.69 0.0050

F —-0.65 0.0071

Table V shows the results of integrating the continuous func-
tion and the C~ function, respectively. For the continuous func-
tion, ali the sequences in dimensions two and three are converg-
ing at a rate close to 1/N, with the Halton sequence having the
lowest error again. The higher dimensions look about the same
across the sequences and have a convergence rate of around
N=%7, For the smooth function, Halton is again the best in two
dimehsions and shows a steady decay in convergence rate with
dimension, going from N-% for s = 2 to N for s = 6. The
Sobol’” sequence shows the same kind of erratic behavior it did
for the cone, with the fourth dimension again being particularly
bad. The errors are about the same size as with Halton (except
for two dimensions). The convergence rates for Sobol’ range
from N in two dimensions o N°® in four dimensions,
although these rates do not appear too reliable. The Faure
sequence lies somewhere between Halton and Sobol’, with
error size and convergence rates of the same magnitude.

What is interesting about these results is that despite having
infinite variation and higher variance, the continuous function
has smaller error and better convergence than the smooth func-
tien. The convergence rates for the continuous function are
about the same as for the cube and better than for the other
characteristic functions. This suggests that continuity of the
integrand is important for improved quasi-random convergence,
but that differentiability does not necessarily help. These exam-
ples show that neither variation, variance, nor smoothness con-
sistently predicts quasi-random integration error behavior.
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3.3. Theoretical Bounds for Integration of
Characteristic Functions

To try and approach the convergence of quasi-random se-
quences on characteristic functions of nonrectangular sets ana-
lytically, Kuipers and Niederreiter [7] define the isotropic dis-

crepancy Jy of a sequence (x,, ..., xy) in F as
A(C,N
Jy=sup [AER) m(C)’,
CE% N

where € is the class of all convex subsets of F, A(C; N) is the
number of x, which are inside C, and m(C) is the measure of
C. In [Theorems 1.5 and 1.6, pp. 94-97], they prove the bound

Dy=iy=C. DY,

where C, is a constant depending only on dimension. Because Jy,
is a bound on the integration error associated with characteristic
functions of convex sets, this bound suggests that the conver-
gence rate for such functions may only be N-'". The computed
examples of such functions show decreased convergence rates
with increasing s, but nothing this extreme.

Press and Teukolsky {18] suggest another argument to ex-
plain the observed decline in convergence rates of quasi-random
sequences when applied to characteristic functions. They reason
that near the boundary of the set described by the characteristic.
function, whether a point of the sequence lands inside the set
(and thus contributes a value of one to the average) or outside
the set (where the function is zero) is essentially random for
nonrectangular sets. Combining the random error near the
boundary, which has N°°° type behavior, with the superior
quasi-random behavior over the rest of the set, described by
the discrepancy Dy, leads to a new convergence estimate. As
dimension increases, the boundary of any set plays an increas-
ingly deminant role. This helps explain the decline in conver-
gence rate with increasing dimension.

This argument can be made more rigorous by reworking the
theorems mentioned above under the assumption of randomness
near the boundary. The following lemma summarizes this result.

Lemma 1. Ler (xy, ..., xv) be a sequence of N points in F
with discrepancy Dy and isotropic discrepancy Jy, such that
Dy = N°. For any convex set C, assume that for a set of
sufficiently small measure which contains the boundary of C,
the error in approximating the measure of the small set with
the sequence is bounded by a constant times the expectation
for a random sequence. Then

JN < Cs [N—(s—l) DN]II(Zs—I)_
Proof. Theorems 1.5 and 1.6 in [7] show that it can be

assumed that C is a closed convex polytope, which means that
it is possible to construct sets P, which are unions of a finite
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number of disjoint rectangles such that P, C C and m(C) —
m(P,) is arbitrarily small. Consider such a set P,. Then

A(CN) _HAGN) APSN)
l 5 m(C)’ 'MN m{C) + N m{P,)
A e
= (APLN)
= }——N mi{P,)
L |pC=piM) oy
N r.
AP, N) m(C — Pp\'*
s’ N~ mP) +k(T) .

This last inequality follows from the assumption of random-
like behavior near the boundary of C. Here £ is a constant. For
any positive integer r, Kuipers and Niederreiter show how to
construct a set P, such that

— m(P,)

= r‘_lDN

A(P,.; N)
N

and

m(C—P)= 29—:/;

Thus it follows that

lA(c; N)

QS\/E 112
N .

km(C)b EYS_IDN+k( N

Because r can be any positive integer, it may be chosen to
optimize the bound. Let # be the first integer smaller than
(ND) "1, Then it follows that 1/r < 2(ND)*~ 1, and the
bound can be written

A(CIN)
N

- m((‘:)l < (ND%’)—(s—l).’(Zs-l) Dy + ks(ND‘gV)UZ(Zs—l) N-12
= N-6Tis-1) pl-26-biie)
L2X12s—1)-1 yli2s—1
+ f NAKE=1-1 plis=1

— N-b=DiEs=1) D}Jm_” 4k N-6=i2s=) plis=1

= CS [N—(s—l) DN]”O’T_]).

Because the right-hand side of the inequality is independent of
the convex set chosen, the left-hand side may be replaced by
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the sup over all convex sets. This gives the result stated in
the lemma.

Even if the optimistic approximation for Dy of N7' is used,
the resulting bound on the integration error for characteristic
functions of convex sets is

|lerror] = CN-#&1,

This result suggests that for an integration problems with dis-
continuous integrand in a high dimension, convergence much
better than that of a random sequence cannot be expected. This
is a result of the fact that sets in high dimensions are almost
entirely boundary, where the integration error of a quasi-random
sequence behaves like the error for a random sequence.

A comparison of this theoretical bound with the above experi-
mental results for characteristic functions shows again that the
bound is somewhat pessimistic. For example, for the character-
istic function of the cone, the Halton sequence in two dimen-
sions has a calculated convergence rate of about &%, whereas
the bound from the lemma has a convergence rate of N %9, In
six dimensions the Halton convergence rate is N8, while the
bound predicts a convergence rate of N~ The actual integra-
tion error shows some similarities to the bound behavior, but
the rates of convergence are better than predicted. Moreover
the constant ¢ in the integration error rate (¢N %} is often seen
to be improved through quasi-Monte Carlo.

4. CONCLUSIONS

The computational experiments described above show that
Quasi-Monte Carlo methods, using quasi-random (i.e., low dis-
crepancy) sequences, provide an effective integration technique
for many multidimensional integrals. Moreover, the error in
the quasi-Monte Carlo integration method is found to be sig-
nificantly less than the corresponding error for a standard Monte
Carlo (i.e., random or pseudo-random) method. Of the quasi-
random sequences tested, for low-dimensional problems up to
around s = 6, the Halton sequence generally gives the best
results. In higher dimensions, for most problems the Sobol’
sequence was superior. The Faure sequénce, which has the best
theoretical bound [9], was generally better than random, but
was for the most part outperformed by Halton or Sobol’.

It is important to note, however, that the error reduction for
quasi-Monte Carlo methods is limited by several factors. For
integration of smooth functions in one dimension, the etror is of
size ¢,N™!, compared (o error size ¢,V for random simulation
{which has this error size for all dimensions). If the dimension
is increased or the integrand function is less smooth, the ob-
served error may be of size ¢,N™* in which = A =< 1. Still
the error for guasi-Monte Carlo integration is almost always
significantly better than that for standard Monte Carlo, using
a random or pseudo-random sequence, due to either a larger
algebraic decay rate A or a smaller constant ¢. Thus for a
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fixed error tolerance level, the quasi-random simulation requires
significantly smaller number N of simulation points. In many
problems with complicated integrands, use of the simulation
points entails a lot of computation, so that the resulting reduc-
tion in computational effort will more than compensate for the
increased work required to generate the quasi-random sequence.

In another paper [10] we have used a quasi-Monte Carlo
method for simulating solutions of the heat equation. The com-
putational results in [10] indicate a dependence on dimension
that is quite similar to that for gnasi-Monte Carlo integration
seen above. They also show that use of quasi-random sequences
is delicate, since the elements of the sequence are correlated.
For example, efficient simulation of the heat equation is possible
only if the particle labels are reordered. Also use of a quasi-
random sequence in the Box—Muller method for sampling a
Gaussian distribution results in significant loss of efficiency.

These results lead to several conclusions concerning applica-
tion of quasi-random sequences to Monte Carlo methods. First,
there are many problems for which direct application of quasi-
Monte Carlo may be superior to standard quadrature or Monte
Carlo. Examples include smooth integration problems in inter-
mediate dimension, such as absorption or scattering from rough
surfaces, and discontinuous integration problems in low dimen-
sion. For such problems, use of quasi-Monte Carlo s superior
to standard Monte Carlo (even with variance reduction), since
it provides a better convergence rate {(not just a better constant).

For more difficult problems, however, the advantages of
quasi-Monte Carlo over standard variance reduction are not as
clear, and effective use of quasi-random sequences requires
more effort. We expect that our results will guide the develop-
ment of modified variance reduction and other Monte Carlo
techniques employing quasi-random sequences. This may re-
quire reformulation of the technique to insure that the resulting
integrands are smooth and low dimensional. One such example
is the modified absorption method in Section 2. Our computa-
tional results show that this made the quasi-Monte Carlo method
muach more accurate.

In a related work, several modified Monte Carlo methods
have been developed for effective application of quasirandom
sequences. These include a smoothed acceptance-tejection
method and a lower dimensional Feynman—Kac integration
method in [12] and the Diffusion Monte Carlo method [11].
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We have not yet succeeded in application of quasirandom se-
quences to other Monte Carlo methods, such as the Metropolis
algorithm and stratification. .

We expect that future progress with quasirandom methods
will depend on further modifications of standard Monte Carlo
methods for simulation and variance reduction.
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